3个回答
展开全部
g(1/4)=cos(π/4)=(根号2)/2
g(5/6)=g(5/6-1)+3/2=g(-1/6)+3/2=cos(-π/6)+3/2=(根号3)/2 +3/2
f(2/3)=f(2/3-1)+1/2=f(-1/3)+1/2=sin(-π/3)+1/2=-(根号3)/2 +1/2
f(1/4)=f(1/4-1)+1/2=f(-3/4)+1/2=sin(-3π/4) +1/2=-(根号2)/2 +1/2
那么g(1/4)+f(2/3)+g(5/6)+f(1/4)
=1/2+1/2+3/2=5/2
楼主,我等级最低,采纳我吧。(*^__^*) 嘻嘻……!
g(5/6)=g(5/6-1)+3/2=g(-1/6)+3/2=cos(-π/6)+3/2=(根号3)/2 +3/2
f(2/3)=f(2/3-1)+1/2=f(-1/3)+1/2=sin(-π/3)+1/2=-(根号3)/2 +1/2
f(1/4)=f(1/4-1)+1/2=f(-3/4)+1/2=sin(-3π/4) +1/2=-(根号2)/2 +1/2
那么g(1/4)+f(2/3)+g(5/6)+f(1/4)
=1/2+1/2+3/2=5/2
楼主,我等级最低,采纳我吧。(*^__^*) 嘻嘻……!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
g(1/4)+f(2/3)+g(5/6)+f(1/4)
2/3>0
所以f(2/3)
=f(2/3-1)+1/2
=f(-1/3)+1/2
=sin(-π/3)+1/2
=-√3/2+1/2
=(1-√3)/2
同理
f(1/4)
=f(1/4-1)+1/2
=sin(-3π/4)+1/2
=(1-√2)/2
1/4<1/2
g(1/4)=cosπ/4=√2/2
5/6>1/2
g(5/6)
=g(5/6-1)+3/2
=g(-1/6)+3/2
=cos(-π/6)+3/2
=(√3+3)/2
原式=(√2+1-√3+√3+3+1-√2)/2=5/2
2/3>0
所以f(2/3)
=f(2/3-1)+1/2
=f(-1/3)+1/2
=sin(-π/3)+1/2
=-√3/2+1/2
=(1-√3)/2
同理
f(1/4)
=f(1/4-1)+1/2
=sin(-3π/4)+1/2
=(1-√2)/2
1/4<1/2
g(1/4)=cosπ/4=√2/2
5/6>1/2
g(5/6)
=g(5/6-1)+3/2
=g(-1/6)+3/2
=cos(-π/6)+3/2
=(√3+3)/2
原式=(√2+1-√3+√3+3+1-√2)/2=5/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
g(1/4)=cosπ/4=√2/2
f(2/3)=f(-1/3)+1/2=sin(-π/3)+1/2=(1-√3)/2
g(5/6)=g(-1/6)+3/2=cos(-π/6)+3/2=(3+√3)/2
f(1/4)=f(-3/4)+1/2=sin(-3π/4)+1/2=(1-√2)/2
g(1/4)+f(2/3)+g(5/6)+f(1/4)=5/2
f(2/3)=f(-1/3)+1/2=sin(-π/3)+1/2=(1-√3)/2
g(5/6)=g(-1/6)+3/2=cos(-π/6)+3/2=(3+√3)/2
f(1/4)=f(-3/4)+1/2=sin(-3π/4)+1/2=(1-√2)/2
g(1/4)+f(2/3)+g(5/6)+f(1/4)=5/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询