设ab均为m*n矩阵,证明r(a+b)<=ra+rb
设a1,…,an为A的列向量,b1,…,bn为B的列向量,不妨设a1,…,ar为A的列向量的极大线性无关组,b1,…,bl为B的列向量的极大线性无关组。
则a1,…,an均可由a1,…,ar线性表出,b1,…,bn均可由b1,…,bl线性表出,从而A+B的列向量a1+b1,…an+bn均可由a1,…,ar,b1,…,bl线性表出,从而r(A+B)<=r(a1,…,ar,b1,…,bl)<=r(a1,…,ar)+r(b1,…,bl)=r(A)+r(B)
扩展资料:
这m×n 个数称为矩阵A的元素,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。
矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积 ,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。
当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
参考资料来源:百度百科——矩阵