函数单调性判断 知道解题思路 可是 化解因式好麻烦 好怕 而且不知道化解因式的方向 该往哪个方向

函数单调性判断知道解题思路可是化解因式好麻烦好怕而且不知道化解因式的方向该往哪个方向才能提出公因式便于比较函数的大小请高中数学老师指导... 函数单调性判断 知道解题思路 可是 化解因式好麻烦 好怕 而且不知道化解因式的方向 该往哪个方向才能提出公因式便于比较函数的大小 请高中数学老师指导 展开
 我来答
帐号已注销
2015-01-31 · TA获得超过1139个赞
知道小有建树答主
回答量:367
采纳率:0%
帮助的人:173万
展开全部
首先,最常用的就是导数法,利用定义证明函数y=f(x)在给定的区间D上的单调性的一般步骤:
(1)任取x1,x2∈D,且x1<x2;
(2)作差f(x1)-f(x2);
(3)变形(通常是因式分解和配方);
(4)定号(即判断差f(x1)-f(x2)的正负);
(5)下结论(即指出函数 f(x) 在给定的区间D上的单调性)。

但是,如果复合函数的话
可以把函数化成几个单一的函数。
比如说y=4/(x+5)
我们可以看成是y=5/x 和y=x+5两个函数的复合,然后分别确定两个函数的单调区间,当然前边那个只是举例,事实上一般都比那个复杂。
确定完单一函数的单调区间后取交集,比如:第一个单一函数的单调区间是
(3,6)递增,[6,12)递减,(13,15)递增(假设这就是定义域)
第二个函数的单调区间是(3,12)单调递减,(13,15)递增

那么我们就要取他们的单调交集
因为第二个函数的递减区间是(3,12)
而第一个正好是(3,6)和[6,12)
那么就可以直接划分成(3,6),[6,12),(13,15)三个集合
第一个集合是增减(即第一个函数是增,第2个函数是减)
依此类推,第二个集合是减减,第三个增增
有一个定理是复合函数的单调性是
增增得增
减减得增
增减得减
其实就是正负号相乘,正正得正,负负得正
关键在于找到单一函数和取对交集

最后,说明:

1、讨论函数的单调性必须在定义域内进行,即函数的单调区间是其定义域的子集,因此讨论函数的单调性,必

须先确定函数的定义域,

2、函数的单调性是对某个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有

增减变化,所以不存在单调性问题;另外,中学阶段研究的主要是连续函数或分段连续函数,对于闭区间

上的连续函数来说,只要在开区间上单调,它在闭区间上也就单调,因此,在考虑它的单调区间时,包括

不包括端点都可以;还要注意,对于在某些点上不连续的函数,单调区间不包括不连续点。
更多追问追答
追问
我是说化解因式 判断函数大小 这一步 没头绪 不知道往哪个方向化解 你没认真看
追答
这个就是初中的因式分解那一块的知识了
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式