求二元函数z=x2+4y2+9在区域x2+y2≤4的最大值、最小值
展开全部
先考虑驻点:az/ax=2x=0,az/ay=8y=0,驻点是(0,0),z(0,0)=9.
再考虑边界x^2+y^2=4.用Lagrange乘子法.
令F=z+c(x^2+y^2--4),
aF/ax=2x+2cx=0;
aF/ay=8y+2cy=0;
1、c=-1时,第二个方程得y=0,代入配槐边界得x=2或-2,因此唯卖谨两个点为
(2,0)和(-2,0),此时z(2,0)=z(-2,0)=13.
2、c=-4时,代入第一个方程得x=0,于是y=2或-2
z(0,2)=z(0,-2)=25;
综上比较得z的指基最大值在(0,2)和(0,-2)达到,为25;
最小值在(0,0)达到,是9.
再考虑边界x^2+y^2=4.用Lagrange乘子法.
令F=z+c(x^2+y^2--4),
aF/ax=2x+2cx=0;
aF/ay=8y+2cy=0;
1、c=-1时,第二个方程得y=0,代入配槐边界得x=2或-2,因此唯卖谨两个点为
(2,0)和(-2,0),此时z(2,0)=z(-2,0)=13.
2、c=-4时,代入第一个方程得x=0,于是y=2或-2
z(0,2)=z(0,-2)=25;
综上比较得z的指基最大值在(0,2)和(0,-2)达到,为25;
最小值在(0,0)达到,是9.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询