如图,在正方形ABCD中,E为AD的中点,DF⊥CE于M,交AC于点N,交AB于点F,连接EN、BM.有如下结论:①△AD

如图,在正方形ABCD中,E为AD的中点,DF⊥CE于M,交AC于点N,交AB于点F,连接EN、BM.有如下结论:①△ADF≌△DCE;②MN=FN;③CN=2AN;④S... 如图,在正方形ABCD中,E为AD的中点,DF⊥CE于M,交AC于点N,交AB于点F,连接EN、BM.有如下结论:①△ADF≌△DCE;②MN=FN;③CN=2AN;④S△ADN:S四边形CNFB=2:5;⑤∠ADF=∠BMF.其中正确结论的个数为(  )A.2个B.3个C.4个D.5个 展开
 我来答
Believe°89i
推荐于2020-02-14 · 超过63用户采纳过TA的回答
知道答主
回答量:183
采纳率:0%
帮助的人:68.2万
展开全部
①在△ADF和△DCE中,
∠ADF=∠DCE
∠DAF=∠EDC
AD=CD

∴△ADF≌△DCE,
故本选项正确;

②∵△ADF≌△DCE,
∴DE=AF,
∵AE=DE,
∴AE=AF,
在△ANF和△ANE中
AE=AF
∠NAF=∠NAE
AN=AN

∴△ANF≌△ANE,
∴NF=NE,
∵NM⊥CE,
∴NE>MN,
∴NF>MN,
∴MN=FN错误,
故本选项错误

③∵AF∥CD,
∴∠CDN=∠NFA,∠DCN=∠NAF,
∴△DCN∽△FAN,
又∵△ADF≌△DCE,且四边形ABCD为正方形,
∴AF=
1
2
AB=
1
2
DC,
CN
AN
CD
AF
=2

∴CN=2AN,
故本选项正确;

④连接CF,
设S△ANF=1,
则S△ACF=3,S△ADN=2
∴S△ACB=6,
∴S四边形CNFB=5,
∴S△ADN:S四边形CNFB=2:5,
故本选项正确;

⑤延长DF与CB交于G,则∠ADF=∠G,
根据②的结论F为AB中点,即AF=BF,
在△DAF与△GBF中,
∠ADF=∠G
∠DAB=∠GBF=90°
AF=BF

∴△DAF≌△GBF(AAS),
∴BG=AD,又AD=BC,
∴BC=BG,
又∵∠ADF=∠DCE,∠ADF+∠CDM=90°,
∴∠DCE+∠CDM=90°,
∴∠DMC=∠CMG=90°,
∴△CMG是直角三角形,
∴MB=BG=BC(直角三角形斜边上的中线等于斜边的一半),
∴∠G=∠BMF,
因此∠ADF=∠BMF,故选项正确.
所以正确的有①③④⑤共4个.
故选C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式