要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:

要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:规格类型A规格B规格C规格钢板类型第一种钢板211第二种钢板123今需A... 要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示: 规格类型 A规格 B规格 C规格 钢板类型 第一种钢板 2 1 1 第二种钢板 1 2 3今需A、B、C三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少? 展开
 我来答
蹈离恼3294
推荐于2017-09-08 · TA获得超过422个赞
知道答主
回答量:153
采纳率:33%
帮助的人:81.1万
展开全部
解:设需要第一种钢板x张,第二种钢板y张,钢板总数z张,则
2x+y≥15
x+2y≥18
x+3y≥27
x∈N,y∈N
目标函数 z=x+y
作出可行域如图所示,作出直线x+y=0.作出一组平行直线x+y=t(其中t为参数).
其中经过可行域内的点且和原点距离最近的直线,
经过直线 x+3y=27和直线 2x+y=15的交点A(
18
5
39
5
)
,直线方程为x+y=
57
5

由于
18
5
39
5
都不是整数,而最优解(x,y)中,x,y必须都是整数,
所以,可行域内点A(
18
5
39
5
)
不是最优解.
经过可行域内的整点(横坐标和纵坐标都是整数的点),且与原点距离最近的直线是x+y=12.
经过的整点是B(3,9)和C(4,8),它们是最优解.
故要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种,第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法都最少要截两种钢板共12张.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式