要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:
要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:规格类型A规格B规格C规格钢板类型第一种钢板211第二种钢板123今需A...
要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示: 规格类型 A规格 B规格 C规格 钢板类型 第一种钢板 2 1 1 第二种钢板 1 2 3今需A、B、C三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?
展开
1个回答
展开全部
解:设需要第一种钢板x张,第二种钢板y张,钢板总数z张,则
目标函数 z=x+y
作出可行域如图所示,作出直线x+y=0.作出一组平行直线x+y=t(其中t为参数).
其中经过可行域内的点且和原点距离最近的直线,
经过直线 x+3y=27和直线 2x+y=15的交点A(
,
),直线方程为x+y=
.
由于
和
都不是整数,而最优解(x,y)中,x,y必须都是整数,
所以,可行域内点A(
,
)不是最优解.
经过可行域内的整点(横坐标和纵坐标都是整数的点),且与原点距离最近的直线是x+y=12.
经过的整点是B(3,9)和C(4,8),它们是最优解.
故要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种,第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法都最少要截两种钢板共12张.
|
作出可行域如图所示,作出直线x+y=0.作出一组平行直线x+y=t(其中t为参数).
其中经过可行域内的点且和原点距离最近的直线,
经过直线 x+3y=27和直线 2x+y=15的交点A(
18 |
5 |
39 |
5 |
57 |
5 |
由于
18 |
5 |
39 |
5 |
所以,可行域内点A(
18 |
5 |
39 |
5 |
经过可行域内的整点(横坐标和纵坐标都是整数的点),且与原点距离最近的直线是x+y=12.
经过的整点是B(3,9)和C(4,8),它们是最优解.
故要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种,第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法都最少要截两种钢板共12张.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询