如图,在等腰△ABC中,AB=AC=5cm,BC=6cm,AD⊥BC,垂足为点D。点P,Q分别从B,C两点同时出发,其中点P从
如图,在等腰△ABC中,AB=AC=5cm,BC=6cm,AD⊥BC,垂足为点D。点P,Q分别从B,C两点同时出发,其中点P从点B开始沿BC边向点C运动,速度为1cm/s...
如图,在等腰△ABC中,AB=AC=5cm,BC=6cm,AD⊥BC,垂足为点D。点P,Q分别从B,C两点同时出发,其中点P从点B开始沿BC边向点C运动,速度为1cm/s,点Q从点C开始沿CA边向点A运动,速度为2cm/s,设它们运动的时间为x(s)。 (1)当x为何值时,将△PCQ沿直线PQ翻折180°,使C点落到C′点,得到的四边形CQC′P是菱形;(2)设△PQD的面积为y(cm 2 ),当0<x<2.5时,求y与x的函数关系式;(3)当0<x<2.5时,是否存在x,使得△PDM与△MDQ的面积比为5∶3,若存在,求出x的值;若不存在,请说明理由。
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询