如图在四棱锥P-ABCD中侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD为直角梯形.其中BC∥AD,∠BAD=90°,AD=
如图在四棱锥P-ABCD中侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD为直角梯形.其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点①若CD∥平面P...
如图在四棱锥P-ABCD中侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD为直角梯形.其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点①若CD∥平面PBO 试指出O的位置并说明理由②求证平面PAB⊥平面PCD③若PD=BC=1,AB=22,求P-ABCD的体积.
展开
1个回答
展开全部
①解:因为CD∥平面PBO,CD?平面ABCD,且平面ABCD∩平面PBO=BO,
所以BO∥CD
又BC∥AD,
所以四边形BCDO为平行四边形,则BC=DO,
而AD=3BC,故点O的位置满足AO=2OD.
②证明:因为侧面PAD⊥底面ABCD,AB?底面ABCD,且AB⊥交线AD,
所以AB⊥平面PAD,则AB⊥PD又PA⊥PD,
且PA?平面PAB,AB?平面PAB,AB∩PA=A,
所以PD⊥平面PAB,PD?平面PCD,
所以:平面PAB⊥平面PCD;
③解:过P作PE⊥AD,
∵侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,
∴PE⊥底面ABCD,
∵PD=1,AD=3BC,棱PA⊥PD,
∴PA=2
∴PE=
∵AB=2
,∠BAD=90°
∴P-ABCD的体积为
?
?(1+3)?2
?
=
.
所以BO∥CD
又BC∥AD,
所以四边形BCDO为平行四边形,则BC=DO,
而AD=3BC,故点O的位置满足AO=2OD.
②证明:因为侧面PAD⊥底面ABCD,AB?底面ABCD,且AB⊥交线AD,
所以AB⊥平面PAD,则AB⊥PD又PA⊥PD,
且PA?平面PAB,AB?平面PAB,AB∩PA=A,
所以PD⊥平面PAB,PD?平面PCD,
所以:平面PAB⊥平面PCD;
③解:过P作PE⊥AD,
∵侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,
∴PE⊥底面ABCD,
∵PD=1,AD=3BC,棱PA⊥PD,
∴PA=2
2 |
∴PE=
2
| ||
3 |
∵AB=2
2 |
∴P-ABCD的体积为
1 |
3 |
1 |
2 |
2 |
2
| ||
3 |
16 |
9 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询