如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E;(1)求证
如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E;(1)求证:BE=CE;(2)若以O、D、E、C为顶点的四边...
如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E;(1)求证:BE=CE;(2)若以O、D、E、C为顶点的四边形是正方形,⊙O的半径为r,求△ABC的面积;(3)若EC=4,BD=43,求⊙O的半径OC的长.
展开
1个回答
展开全部
(1)证明:连接CD,由AC是直径知CD⊥AB;
DE、CE都是切线,所以DE=CE,∠EDC=∠ECD;
又∠B+∠ECD=90°,∠BDE+∠EDC=90°;
所以∠B=∠BDE,所以BE=DE,从而BE=CE;
(2)解:连接OD,
当以O、D、E、C为顶点的四边形是正方形时,DE=EC=OC=OD=r;
从而BE=r,即△ABC是一个等腰直角三角形;
AC=AB=2r,S△ABC=2r2;
(3)解:若EC=4,BD=4
,则BC=8;
在Rt△BDC中,cos∠CBD=
=
;所以∠CBD=30°;
在Rt△ABC中,
=tan30°,即AC=BCtan30°=8×
=
,OC=
=
;
另解:设OC=r,AD=x;由EC=4,BD=4
得BC=8,DC=4;
则:
DE、CE都是切线,所以DE=CE,∠EDC=∠ECD;
又∠B+∠ECD=90°,∠BDE+∠EDC=90°;
所以∠B=∠BDE,所以BE=DE,从而BE=CE;
(2)解:连接OD,
当以O、D、E、C为顶点的四边形是正方形时,DE=EC=OC=OD=r;
从而BE=r,即△ABC是一个等腰直角三角形;
AC=AB=2r,S△ABC=2r2;
(3)解:若EC=4,BD=4
3 |
在Rt△BDC中,cos∠CBD=
BD |
BC |
| ||
2 |
在Rt△ABC中,
AC |
BC |
| ||
3 |
8
| ||
3 |
AC |
2 |
4
| ||
3 |
另解:设OC=r,AD=x;由EC=4,BD=4
3 |
则:
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|