求不定积分∫x(cosx)^2dx

 我来答
简单生活Eyv
2021-07-23 · TA获得超过1万个赞
知道小有建树答主
回答量:1547
采纳率:100%
帮助的人:25.2万
展开全部

=1/4x^2+1/4xsin2x+1/8cos2x+C

∫x(cosx)^2dx=∫xcos^2xdx

=∫x(1+cos2x/2)dx

=1/4x^2+1/2∫xcos2xdx

=1/4x^2+1/4∫xd(sin2x)

=1/4x^2+1/4xsin2x-1/4∫sin2xdx

=1/4x^2+1/4xsin2x+1/8cos2x+C

说明:C是常数

不可积函数

虽然很多函数都可通过如上的各种手段计算其不定积分,但这并不意味着所有的函数的原函数都可以表示成初等函数的有限次复合。

原函数不可以表示成初等函数的有限次复合的函数称为不可积函数,利用微分代数中的微分Galois理论可以证明,如xx ,sinx/x这样的函数是不可积的。

十张树
2020-12-25 · 数十载,张而不需,是树
十张树
采纳数:70 获赞数:3487

向TA提问 私信TA
展开全部

∫xcosx^2dx=(1/2)∫cosx^2dx^2=(1/2)sinx^2+C;

在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

扩展资料:

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分;

而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2020-12-24 · TA获得超过25.9万个赞
知道小有建树答主
回答量:2206
采纳率:96%
帮助的人:81.6万
展开全部

∫x(cosx)^2dx=∫xcos^2xdx

=∫x(1+cos2x/2)dx

=1/4x^2+1/2∫xcos2xdx

=1/4x^2+1/4∫xd(sin2x)

=1/4x^2+1/4xsin2x-1/4∫sin2xdx

=1/4x^2+1/4xsin2x+1/8cos2x+C

说明:C是常数

扩展资料

推导反三角函数的一个快速方法是通过考虑直角三角形的几何形状,其长度为1的一侧,长度x的另一侧(0和1之间的任何实数),然后应用毕达哥拉斯定理和三角比。

对于0和π附近的角度,秋水仙素受到病态调节,从而计算出计算机实现中精度降低的角度(由于位数有限). 类似地,对于π/ 2和π/ 2附近的角度,反正弦不准确。

参考资料来源:百度百科—反余弦三角函数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
fin3574
高粉答主

2015-03-11 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134618

向TA提问 私信TA
展开全部

答案在图片上,满意请点采纳

千万别点错哦,那个人上传的垃圾文档的是骗人的

愿您学业进步,谢谢☆⌒_⌒☆

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
滚雪球的秘密
高粉答主

2020-12-24 · 醉心答题,欢迎关注
知道大有可为答主
回答量:4152
采纳率:100%
帮助的人:110万
展开全部

∫x(cosx)^2dx的不定积分是xsin2x/4+x。

∫xcos^2 x dx

=∫x(cos2x+1)/2 dx

=1/2*∫xcos2xdx+1/2*∫xdx

=1/4∫xcos2xd2x+1/4∫dx^2

=1/4∫xdsin2x +x^2/4

=1/4 *xsin2x-1/4∫sin2xdx +x^2/4

=xsin2x/4+x^2/4-1/8∫sin2xd2x

=xsin2x/4+x^2/4+1/8∫dcos2x

=xsin2x/4+x

所以∫x(cosx)^2dx的不定积分是xsin2x/4+x。

扩展资料:

1、分部积分法的形式

(1)利用有些函数经一次或二次求微分后不变的性质来进行分部积分。

例:∫e^x*sinxdx=∫sinxde^x=e^x*sinx-∫e^xdsinx=e^x*sinx-∫e^x*cosxdx

=e^x*sinx-∫cosxde^x=e^x*sinx-e^x*cosx+∫e^xdcosx

=e^x*sinx-e^x*cosx-∫e^x*sinxdx

则2∫e^x*sinxdx=e^x*sinx-e^x*cosx,可得

∫e^x*sinxdx=1/2e^x*(sinx-cosx)+C

(2)通过对u(x)求微分后,du=u'dx中的u'比u更加简洁。

例:∫x^2*e^xdx=∫x^2de^x=x^2*e^x-∫e^xdx^2=x^2*e^x-∫2x*e^xdx

例:∫xarctanxdx=∫arctanxd(1/2x^2)

=1/2x^2*arctanx-1/2∫x^2darctanx=1/2x^2*arctanx-1/2∫x^2/(1+x^2)dx

2、不定积分公式

∫mdx=mx+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C、∫e^xdx=e^x+C



本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式