在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F.求证:(

在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F.求证:(1)AE=CF;(2)S四边形AEPF=1... 在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F.求证:(1)AE=CF;(2)S四边形AEPF=12S△ABC. 展开
 我来答
师彗云001
推荐于2016-09-23 · 超过56用户采纳过TA的回答
知道答主
回答量:100
采纳率:0%
帮助的人:101万
展开全部
证明:(1)连接AP.

在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,
∴AP=PC=BP(直角三角形斜边上的中线是斜边长的一半);
在直角三角形ABP中,∠B=∠BAP=45°;
在直角三角形APC中,∠PAC=∠C=45°;
∴∠EAP=∠C=45°;
∵∠FPE=∠APC=90°,
∴∠CPF=∠APE;
∴在△AEP与△CPF中,
∠EAP=∠C=45°,
AP=CP,
∠CPF=∠APE,
∴△AEP≌△CPF(ASA),
∴AE=CF(全等三角形的对应边相等);

(2)∵△AEP≌△CPF,
∴S△AEP=S△CPF(全等三角形的面积相等);
又∵S四边形AEPF=S△AEP+S△AFP
∴S四边形AEPF=S△APC=
1
2
S△ABC
即S四边形AEPF=
1
2
S△ABC
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式