已知函数f(x)=x3-3ax2+3x+1.(Ⅰ)当a=1时,判断f(x)的单调性,并求其单调区间;(Ⅱ)若x∈(0,+

已知函数f(x)=x3-3ax2+3x+1.(Ⅰ)当a=1时,判断f(x)的单调性,并求其单调区间;(Ⅱ)若x∈(0,+∞)时,f'(x)≥0恒成立,求a的取值范围.... 已知函数f(x)=x3-3ax2+3x+1.(Ⅰ)当a=1时,判断f(x)的单调性,并求其单调区间;(Ⅱ)若x∈(0,+∞)时,f'(x)≥0恒成立,求a的取值范围. 展开
 我来答
街角系列檃d8
2014-11-19 · TA获得超过478个赞
知道答主
回答量:113
采纳率:0%
帮助的人:54.6万
展开全部
(Ⅰ)a=1时,f(x)=x3-3x2+3x+1,
则f′(x)=3x2-6x+3=3(x-1)2≥0,
∴f(x)在R上为增函数,增区间为(-∞,+∞).
(Ⅱ)f′(x)≥0恒成立,即3x2-6ax+3≥0恒成立,得a≤
x2+1
2x

g(x)=
x2+1
2x
,只需a≤[g(x)]min
g(x)=
1
2
(x+
1
x
)≥
1
2
?2
x?
1
x
=1

即[g(x)]min=1,
∴a≤1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式