已知函数f(x)=x|x+1|-x-2.(1)求函数f(x)在区间[-2,2]上的最大值;(2)是否存在区间[m,n],使得

已知函数f(x)=x|x+1|-x-2.(1)求函数f(x)在区间[-2,2]上的最大值;(2)是否存在区间[m,n],使得函数的定义域与值域均为[m,n],若存在,请求... 已知函数f(x)=x|x+1|-x-2.(1)求函数f(x)在区间[-2,2]上的最大值;(2)是否存在区间[m,n],使得函数的定义域与值域均为[m,n],若存在,请求出所有可能的区间[m,n],若不存在,请说明理由. 展开
 我来答
妙妙系列昧BF
2014-12-09 · 超过52用户采纳过TA的回答
知道答主
回答量:108
采纳率:0%
帮助的人:118万
展开全部
解:(1)f(x)=x|x+1|-x-2=
x2?2,x≥?1
?x2?2x?2,x<?1

作出函数图象,如图所示:
可知函数f(x)在区间[-2,-1]上是增函数,在区间(-1,0]上是减函数,在区间(0,2]上是增函数,
又f(-1)=-1,f(2)=2,所以函数f(x)在区间[-2,2]上的最大值为f(2)=2.
(2)f(x)=x|x+1|-x-2=
x2?2,x≥?1
?x2?2x?2,x<?1

①当0≤m<n时,则f(x)在区间[m,n]上单调递增,
f(m)=m
f(n)=n
,∴
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消