如图(1),BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、A

如图(1),BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,与直线BC相交于M、N.(1)试说明:FG=... 如图(1),BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,与直线BC相交于M、N.(1)试说明:FG=12(AB+BC+AC);(2)①如图(2),BD、CE分别是△ABC的内角平分线;②如图(3),BD为△ABC的内角平分线,CE为△ABC的外角平分线.则在图(2)、图(3)两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况说明理由. 展开
 我来答
天命5l渑I
推荐于2016-06-17 · 超过59用户采纳过TA的回答
知道答主
回答量:114
采纳率:100%
帮助的人:108万
展开全部
(1)证明:∵AF⊥BD,∠ABF=∠MBF,
∴∠BAF=∠BMF,
∴MB=AB,
∴AF=MF,
 同理可说明:CN=AC,AG=NG 
∴FG是△AMN的中位线,
∴FG=
1
2
MN=
1
2
(MB+BC+CN)=
1
2
(AB+BC+AC)  

(2)解:图(2)中,FG=
1
2
(AB+AC-BC)    
图(3)中,FG=
1
2
(AC+BC-AB)     
①如图(2),延长AF、AG,与直线BC相交于M、N,
由(1)中可知,MB=AB,AF=MF,CN=AC,AG=NG,
∴FG=
1
2
MN=
1
2
(BM+CN-BC)=
1
2
(AB+AC-BC),
②如图(3)延长AF、AG,与直线BC相交于M、N,同样由(1)中可知,MB=AB,AF=MF,CN=AC,AG=NG,
∴FG=
1
2
MN=
1
2
(CN+BC-BM)=
1
2
(AC+BC-AB),解答正确一种即可     
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式