已知等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14成等比数列.(1)求数列{an}的通项公式;(2)设b
已知等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14成等比数列.(1)求数列{an}的通项公式;(2)设bn=1n(an+3)(n∈N*),Sn=b1+b...
已知等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14成等比数列.(1)求数列{an}的通项公式;(2)设bn=1n(an+3)(n∈N*),Sn=b1+b2+…+bn,求Sn>136.
展开
1个回答
展开全部
(1)∵等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14成等比数列,
∴(a1+d)(a1+13d)=(a1+4d)2
整理得:2a1d=d2,
∵a1=1,解得d=2(d=0舍去)
∴an=2n?1(n∈N*),
(2)bn=
=
=
(
?
),
∴Sn=b1+b2+…+bn
=
[(1?
)+(
?
)+…+(
?
)]
=
(1?
),
∴当n=1时,Sn取最小值S1=
(1?
)=
>
.
∴Sn>
.
∴(a1+d)(a1+13d)=(a1+4d)2
整理得:2a1d=d2,
∵a1=1,解得d=2(d=0舍去)
∴an=2n?1(n∈N*),
(2)bn=
1 |
n(an+3) |
1 |
2n(n+1) |
1 |
2 |
1 |
n |
1 |
n+1 |
∴Sn=b1+b2+…+bn
=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=
1 |
2 |
1 |
n+1 |
∴当n=1时,Sn取最小值S1=
1 |
2 |
1 |
2 |
1 |
4 |
1 |
36 |
∴Sn>
1 |
36 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询