如图所示等腰梯形ABCD中,AD=BC,AB∥CD,对角线AC与BD交于O,∵∠ACD=60°,点S、P、Q分别是OD,OA,BC

如图所示等腰梯形ABCD中,AD=BC,AB∥CD,对角线AC与BD交于O,∵∠ACD=60°,点S、P、Q分别是OD,OA,BC的中点.求证:△PQS是等边三角形.... 如图所示等腰梯形ABCD中,AD=BC,AB∥CD,对角线AC与BD交于O,∵∠ACD=60°,点S、P、Q分别是OD,OA,BC的中点.求证:△PQS是等边三角形. 展开
 我来答
媚阿龙6
2014-08-30 · TA获得超过126个赞
知道答主
回答量:141
采纳率:0%
帮助的人:77.1万
展开全部
解答:证明:连CS,BP,

∵四边形ABCD是等腰梯形,且AC与BD相交于O,
∴AC=BD,
在△CAB和△DBA中,
CA=DB
AB=AB
BC=AD

∴△CAB≌△DBA(SSS),
∴∠CAB=∠DBA,
同理可得出:∠ACD=∠BDC,
∴AO=BO,CO=DO,
∵∠ACD=60°,
∴△OCD与△OAB均为等边三角形.
∵S是OD的中点,
∴CS⊥DO,
在Rt△BSC中,Q为BC中点,SQ是斜边BC的中线,
∴SQ=
1
2
BC,
同理BP⊥AC,
在Rt△BPC中,PQ=
1
2
BC,
又∵SP是△OAD的中位线,
∴SP=
1
2
AD=
1
2
BC.
∴SP=PQ=SQ.
故△SPQ为等边三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式