设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3…).数列{bn}满足bn=1anan+1,Tn为数

设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3…).数列{bn}满足bn=1anan+1,Tn为数列bn的前n项和.(1)求an... 设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3…).数列{bn}满足bn=1anan+1,Tn为数列bn的前n项和.(1)求an和Tn;(2)若对于任意的n∈N+,不等式λTn<n+8(-1)n恒成立,求实数λ的取值范围. 展开
 我来答
挚爱鱼子酱幡枻
推荐于2016-10-08 · 超过70用户采纳过TA的回答
知道答主
回答量:190
采纳率:100%
帮助的人:128万
展开全部
(1)当n≥2,n∈N*时,由已知Sn=nan-n(n-1)
得Sn-1=(n-1)an-1-(n-1)(n-2).
两式相减得Sn-Sn-1=nan-(n-1)an-1-2(n-1).
又Sn-Sn-1=an,所以(n-1)an-(n-1)an-1=2(n-1).
即an-an-1=2(n≥2,n∈N*).
所以{an}是以1为首项、2为公差的等差数列,
即an=1+2(n-1)=2n-1,
bn=
1
anan+1
=
1
(2n?1)(2n+1)
=
1
2
1
2n?1
?
1
2n+1
).
则Tn=b1+b2+…+bn=
1
2
[(1?
1
3
)+(
1
3
?
1
5
)+…+(
1
2n?1
?
1
2n+1
)]
=
1
2
(1-
1
2n+1
).
则Tn=
n
2n+1

(2)由于对任意的n∈N+,不等式λTn<n+8(-1)n恒成立,
则当n为奇数时,有λTn<n-8恒成立,
即有λ<
(n?8)(2n+1)
n
=2n-
8
n
-15,
由于2n-
8
n
-15在n≥1上递增,则n=1取得最小值,且为-21,
则λ<-21;
当n为偶数时,有λTn<n+8恒成立,
即有λ<
(n+8)(2n+1)
n
=2n+
8
n
+17,
由于2n+
8
n
+17≥2
2n?
8
n
+17=25,当且仅当n=2,取得最小值,且为25.
则λ<25.
由于对任意的n∈N+,不等式恒成立,则λ<-21.
则实数λ的取值范围是(-∞,-21).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式