已知函数f(x)=ex(ax2-2x-2),a∈R且a≠0.(1)若曲线y=f(x)在点P(2,f(2))处的切线垂直于y轴

已知函数f(x)=ex(ax2-2x-2),a∈R且a≠0.(1)若曲线y=f(x)在点P(2,f(2))处的切线垂直于y轴,求实数a的值;(2)当a>0时,求函数f(|... 已知函数f(x)=ex(ax2-2x-2),a∈R且a≠0.(1)若曲线y=f(x)在点P(2,f(2))处的切线垂直于y轴,求实数a的值;(2)当a>0时,求函数f(|sinx|)的最小值. 展开
 我来答
灏晨9950
推荐于2016-07-24 · 超过64用户采纳过TA的回答
知道答主
回答量:110
采纳率:0%
帮助的人:135万
展开全部
由题意得:f'(x)=(ex)'?(ax2-2x-2)+ex?(ax2-2x-2)'
=ex(ax2?2x?2)+ex(2ax?2)=aex(x?
2
a
)(x+2)
;(3分)
(1)由曲线y=f(x)在点P(2,f(2))处的切线垂直于y轴,
结合导数的几何意义得f'(2)=0,
a?e2?(2?
2
a
)(2+2)
=4ae2?
2a?2
a
=0

解得a=1;(6分)
(2)设|sinx|=t(0≤t≤1),
则只需求当a>0时,函数y=f(t)(0≤t≤1)的最小值.
令f'(x)=0,解得x=
2
a
或x=-2,而a>0,即
2
a
>?2

从而函数f(x)在(-∞,-2)和(
2
a
,+∞)
上单调递增,在(?2,
2
a
)
上单调递减.
2
a
≥1
时,即0<a≤2时,函数f(x)在[0,1]上为减函数,ymin=f(1)=(a-4)e;
0<
2
a
<1
,即 a>2时,函数f(x)的极小值,
即为其在区间[0,1]上的最小值,ymin=f(
2
a
)=?2e
2
a

综上可知,当0<a≤2时,函数f(|sinx|)的最小值为(a-4)e;
当a>2时,函数f(|sinx|)的最小值为?2e
2
a
.(12分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式