(2013?桂林)如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于D,过点D作DE⊥AD交AB于E,以AE为直径作
(2013?桂林)如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于D,过点D作DE⊥AD交AB于E,以AE为直径作⊙O.(1)求证:点D在⊙O上;(2)求证...
(2013?桂林)如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于D,过点D作DE⊥AD交AB于E,以AE为直径作⊙O.(1)求证:点D在⊙O上;(2)求证:BC是⊙O的切线;(3)若AC=6,BC=8,求△BDE的面积.
展开
恒缘用0
推荐于2020-03-10
·
超过49用户采纳过TA的回答
关注
(1)证明:连接OD,
∵△ADE是直角三角形,OA=OE,
∴OD=OA=OE,
∴点D在⊙O上;
(2)证明:∵AD是∠BAC的角平分线,
∴∠CAD=∠DAB,
∵OD=OA,
∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴AC∥OD,
∴∠C=∠ODB=90°,
∴BC是⊙O的切线;
(3)解:在Rt△ACB中,AC=6,BC=8,
∴根据勾股定理得:AB=10,
设OD=OA=OE=x,则OB=10-x,
∵AC∥OD,△ACB∽△ODB,
∴
=
=
,即
=
,
解得:x=
,
∴OD=
,BE=10-2x=10-
=
,
∵
=
,即
=
,
∴BD=5,
过E作EH⊥BD,
∵EH∥OD,
∴△BEH∽△BOD,
∴
=
,即
=
,
∴EH=
,
∴S
△BDE=
BD?EH=
.
收起
为你推荐: