已知抛物线x2=2py(p>0)的焦点为F,过F作倾斜角为300的直线,与抛物线交于A,B两点,若|AF|<|BF|,则|

已知抛物线x2=2py(p>0)的焦点为F,过F作倾斜角为300的直线,与抛物线交于A,B两点,若|AF|<|BF|,则|AF||BF|=()A.12B.13C.14D.... 已知抛物线x2=2py(p>0)的焦点为F,过F作倾斜角为300的直线,与抛物线交于A,B两点,若|AF|<|BF|,则|AF||BF|=(  )A.12B.13C.14D.14 展开
 我来答
血狺KIuf
2014-10-10 · TA获得超过301个赞
知道答主
回答量:188
采纳率:60%
帮助的人:64.7万
展开全部
解答:解:如图,作AA1⊥x轴,
BB1⊥x轴.
则AA1∥OF∥BB1
∴的性质可知
|AF|
|FB|
=||
|OA1|
|oB1|
=
|xA|
|XB|

又已知xA<0,xB>0,
|AF|
|FB|
=-
xA
xB

∵直线AB方程为y=xtan30°+
p
2
,即y=
3
3
x+
p
2

与x2=2py联立得x2-
2
3
3
px-p2=0
∴xA+xB=
2
3
3
p,xA?xB=-p2
∴xAxB=-p2=-(
xA+xB
2
3
3
2
=-
3
4
(xA2+xB2+2xAxB
∴3xA2+3xB2+10xAxB=0
两边同除以xB2(xB2≠0)得
3(
xA
xB
2+10
xA
xB
+3=0
xA
xB
=-3或-
1
3

又∵xA+xB=
2
3
3
p>0,
∴xA>-xB
xA
xB
>-1,
|AF|
|FB|
=-
xA
xB
=-(-
1
3
)=
1
3

故选:B.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式