yarn和传统的mapreduce的主要区别在哪里?
1个回答
展开全部
Hadoop
它是一个分布式系统基础架构,由Apache基金会所开发。
用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,则MapReduce为海量旅好的数据提供了计算。
Yarn
它是Hadoop2.0的升级版。
Yarn 的优点:
这个设计大袜旅大减小了 JobTracker(也就是现在的 ResourceManager)的资源消耗,并且让监测每一个 Job 子任务 (tasks) 状态的程序分布式化了,更安全、更优美。
在新的 Yarn 中,ApplicationMaster 是一个可变更的部分,用户可以对不同的编程模型写自己的 AppMst,让更多类型的编程模型能够跑在 Hadoop 集群中,可以参考 hadoop Yarn 官方配置模板中的 mapred-site.xml 配置。
对于资源的表示以内存为单位 ( 在目前版本的 Yarn 中,没有考虑 cpu 的占用 ),比之前以剩余 slot 数目更合理。
老的框架中,JobTracker 一个很大的负担就是监控 job 下的 tasks 的运行状况,现在,这个部分就扔给 ApplicationMaster 做了,而 ResourceManager 中有一个模块叫做 ApplicationsMasters( 注意不是 ApplicationMaster),它是监测 ApplicationMaster 的运行状况,如果出问题,会将其在其他机器上重启。
Container 是 Yarn 为了将来作资源隔离而提出的一个框架。这一点应该借鉴了 Mesos 的工作,目前是一个框架,仅仅提供 java 虚拟机内存的隔离 ,hadoop 团队的设计告镇凳思路应该后续能支持更多的资源调度和控制 , 既然资源表示成内存量,那就没有了之前的 map slot/reduce slot 分开造成集群资源闲置的尴尬情况。
它是一个分布式系统基础架构,由Apache基金会所开发。
用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,则MapReduce为海量旅好的数据提供了计算。
Yarn
它是Hadoop2.0的升级版。
Yarn 的优点:
这个设计大袜旅大减小了 JobTracker(也就是现在的 ResourceManager)的资源消耗,并且让监测每一个 Job 子任务 (tasks) 状态的程序分布式化了,更安全、更优美。
在新的 Yarn 中,ApplicationMaster 是一个可变更的部分,用户可以对不同的编程模型写自己的 AppMst,让更多类型的编程模型能够跑在 Hadoop 集群中,可以参考 hadoop Yarn 官方配置模板中的 mapred-site.xml 配置。
对于资源的表示以内存为单位 ( 在目前版本的 Yarn 中,没有考虑 cpu 的占用 ),比之前以剩余 slot 数目更合理。
老的框架中,JobTracker 一个很大的负担就是监控 job 下的 tasks 的运行状况,现在,这个部分就扔给 ApplicationMaster 做了,而 ResourceManager 中有一个模块叫做 ApplicationsMasters( 注意不是 ApplicationMaster),它是监测 ApplicationMaster 的运行状况,如果出问题,会将其在其他机器上重启。
Container 是 Yarn 为了将来作资源隔离而提出的一个框架。这一点应该借鉴了 Mesos 的工作,目前是一个框架,仅仅提供 java 虚拟机内存的隔离 ,hadoop 团队的设计告镇凳思路应该后续能支持更多的资源调度和控制 , 既然资源表示成内存量,那就没有了之前的 map slot/reduce slot 分开造成集群资源闲置的尴尬情况。
迈杰
2024-11-30 广告
2024-11-30 广告
RNA-seq数据分析是转录组研究的核心,包括数据预处理、序列比对、定量分析、差异表达分析、功能注释和可视化等步骤。数据预处理主要是质量控制和去除低质量序列。序列比对使用HISAT2、STAR等工具将reads比对到参考基因组。定量分析评估...
点击进入详情页
本回答由迈杰提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询