在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.(1

在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.(1)当点O为AC中点时,①如图1,三角板的两直角边分别交... 在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.(1)当点O为AC中点时,①如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系(无需证明);②如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的猜想是否成立?若成立,请证明;若不成立,请说明理由;(2)当点O不是AC中点时,如图3,三角板的两直角边分别交AB,BC于E、F两点,若AOAC=14,求OEOF的值. 展开
 我来答
TA002C2gfx
推荐于2016-12-01 · 超过57用户采纳过TA的回答
知道答主
回答量:115
采纳率:0%
帮助的人:111万
展开全部
(1)①猜想:AE2+CF2=EF2
②成立.
证明:连结OB.
∵AB=BC,∠ABC=90°,O点为AC的中点,
∴OB=
1
2
,∠BOC=90°,∠ABO=∠BCO=45°.
∵∠EOF=90°,
∴∠EOB=∠FOC,
又∵∠EBO=∠FCO,
在△OEB和△OFC中
∠EOB=∠COF
OB=OC
∠OBE=∠OCF

∴△OEB≌△OFC,
∴BE=CF,
又∵BA=BC,
∴AE=BF.
在Rt△EBF中,
∵∠EBF=90°,
∴BF2+BE2=EF2
∴AE2+CF2=EF2

(2)如图,过点O作OM⊥AB于M,ON⊥BC于N.
∵∠B=90°,
∴∠MON=90°,
∵∠EOF=90°,
∴∠EOM=∠FON.
∵∠EMO=∠FNO=90°,
∴△OME∽△ONF,
OM
ON
=
OE
OF

∵△AOM和△OCN为等腰直角三角形,
∴△AOM∽△OCN,
OM
ON
=
AO
OC

AO
AC
=
1
4

OE
OF
=
1
3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式