在平面直角坐标系xOy中,已知抛物线y=-49(x?2)2+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于

在平面直角坐标系xOy中,已知抛物线y=-49(x?2)2+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点... 在平面直角坐标系xOy中,已知抛物线y=-49(x?2)2+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=255.(1)求此抛物线的函数表达式;(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若HEHF=12时,求点P的坐标;(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG与△ADM相似?若存在,求出所有符合条件的直线QG的解析式;若不存在,请说明理由. 展开
 我来答
鸟思乡1873
2014-11-02 · 超过71用户采纳过TA的回答
知道答主
回答量:137
采纳率:85%
帮助的人:67.5万
展开全部
(1)∵M为抛物线y=-
4
9
(x?2)2
+c的顶点,
∴M(2,c).
∴OH=2,MH=|c|.
∵a<0,且抛物线与x轴有交点,
∴c>0,
∴MH=c,
∵sin∠MOH=
2
5
5

MH
OM
=
2
5
5

∴OM=
5
2
c,
∵OM2=OH2+MH2
∴MH=c=4,
∴M(2,4),
∴抛物线的函数表达式为:y=-
4
9
(x?2)2
+4.

(2)如图1,∵OE⊥PH,MF⊥PH,MH⊥OH,
∴∠EHO=∠FMH,∠OEH=∠HFM.
∴△OEH∽△HFM,
HE
MF
=
HO
MH
=
1
2

HE
HF
=
1
2

∴MF=HF,
∴∠OHP=∠FHM=45°,
∴OP=OH=2,
∴P(0,2).
如图2,同理可得,P(0,-2).


(3)∵A(-1,0),
∴D(1,0),
∵M(2,4),D(1,0),
∴直线MD解析式:y=4x-4,
∵ON∥MH,∴△AON∽△AHM,
AN
AM
=
ON
MH
=
AO
AH
=
1
3

∴AN=
5
3
,ON=
4
3
,N(0,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式