在正方体ABCD-A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O⊥平面GBD

在正方体ABCD-A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O⊥平面GBD.... 在正方体ABCD-A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O⊥平面GBD. 展开
 我来答
手机用户01829
2014-09-04 · 超过60用户采纳过TA的回答
知道答主
回答量:109
采纳率:0%
帮助的人:145万
展开全部
解答:证明:连接GO.
∵DB⊥A1A,DB⊥AC,A1A∩AC=A,
∴DB⊥平面A1ACC1
又A1O?平面A1ACC1,∴A1O⊥DB.
在矩形A1ACC1中,tan∠AA1O=
2
2
,tan∠GOC=
2
2
,∴∠AA1O=∠GOC,
则∠A1OA+∠GOC=90°.∴A1O⊥OG.
∵OG∩DB=O,∴A1O⊥平面GBD.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式