怎么做,求解!
1个回答
展开全部
(sinA)^2 = 1/2 * {cos[(π/3 + B) - (π/3 -B)] - cos[(π/3 + B) + (π/3 - B)]} + (sinB)^2
= 1/2 * [cos(2B) - cos(2π/3)] + (sinB)^2
= 1/2 * [1 - 2(sinB)^2 + cos(π/3)] + (sinB)^2
= 1/2 - (sinB)^2 + 1/4 + (sinB)^2
= 3/4
所以,sinA = √3/2,则 A = 60°
AB' * AC' = b * c * cosA = bc * 1/2 = 12
所以,b*c = 24
又因为 b^2 + c^2 - 2bc*cosA = b^2 + c^2 - bc = a^2
则 b^2 + c^2 - 2bc = (b - c)^2 = a^2 - bc = 4*7 - 24 = 4
所以,c - b = 2, c = b + 2
因此,b = 4, c = 6
= 1/2 * [cos(2B) - cos(2π/3)] + (sinB)^2
= 1/2 * [1 - 2(sinB)^2 + cos(π/3)] + (sinB)^2
= 1/2 - (sinB)^2 + 1/4 + (sinB)^2
= 3/4
所以,sinA = √3/2,则 A = 60°
AB' * AC' = b * c * cosA = bc * 1/2 = 12
所以,b*c = 24
又因为 b^2 + c^2 - 2bc*cosA = b^2 + c^2 - bc = a^2
则 b^2 + c^2 - 2bc = (b - c)^2 = a^2 - bc = 4*7 - 24 = 4
所以,c - b = 2, c = b + 2
因此,b = 4, c = 6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询