
机械专业英语翻译软件 20
CementedCarbidesCementedcarbidesarethecuttingmaterialsmostcommonlyusedinmodernmachini...
Cemented Carbides
Cemented carbides are the cutting materials most
commonly used in modern machining applications. In a
powder metallurgical process a metallic hard material is
sintered at high pressures and temperatures with cobalt
as binder. The properties of cemented carbides are
mainly based on the ratio of tungsten carbide to cobalt
binder and the grain size of the compound. In general, the
finer the grain size, the less cobalt is used and the more
wear resistant the material becomes [52].
By reducing the grain sizes of the tungsten-carbide
powders to submicron grain (0.5 – 0.8 μm) and ultra-fine
grain (0.2 – 0.5 μm), cemented carbides for challenging
machining operations, e.g. dry machining of high-alloyed
steel or high-strength materials, became available. On the
one hand, these cutting materials possess high strengths
at elevated temperatures. On the other hand, the very fine
and homogeneous structure of the cutting materials leads
to satisfactory tensile strengths. Thus, even very small
tools and thin wedges can be manufactured with good
cutting edge stability [53].
The differences in the wear behavior of cemented
carbides were investigated when machining stainless
steel with minimum quantity lubrication. Such a steel is
characterized by high alloy content and an austeniticferritic
structure. The cutting materials used in the
investigation were fine grain, submicron grain, and ultrafine
grain cemented carbides with identical geometry and
a PVD-TiAlN-coating (Figure 13). 展开
Cemented carbides are the cutting materials most
commonly used in modern machining applications. In a
powder metallurgical process a metallic hard material is
sintered at high pressures and temperatures with cobalt
as binder. The properties of cemented carbides are
mainly based on the ratio of tungsten carbide to cobalt
binder and the grain size of the compound. In general, the
finer the grain size, the less cobalt is used and the more
wear resistant the material becomes [52].
By reducing the grain sizes of the tungsten-carbide
powders to submicron grain (0.5 – 0.8 μm) and ultra-fine
grain (0.2 – 0.5 μm), cemented carbides for challenging
machining operations, e.g. dry machining of high-alloyed
steel or high-strength materials, became available. On the
one hand, these cutting materials possess high strengths
at elevated temperatures. On the other hand, the very fine
and homogeneous structure of the cutting materials leads
to satisfactory tensile strengths. Thus, even very small
tools and thin wedges can be manufactured with good
cutting edge stability [53].
The differences in the wear behavior of cemented
carbides were investigated when machining stainless
steel with minimum quantity lubrication. Such a steel is
characterized by high alloy content and an austeniticferritic
structure. The cutting materials used in the
investigation were fine grain, submicron grain, and ultrafine
grain cemented carbides with identical geometry and
a PVD-TiAlN-coating (Figure 13). 展开
展开全部
硬质合金
硬质合金切削材料是最
在现代常用的加工应用。在一
粉末冶金工艺的金属硬材料
烧结高压力和温度的钴
为粘结剂。硬质合金的属性
主要基于碳化钨钴比
粘合剂和复合晶粒尺寸。在一般情况下,
粒度越细,越用钴和更
耐磨材料变成[52]。
通过降低了晶粒尺寸钨硬质合金
亚微米晶粒(0.5 - 0.8微米)和超粉细
粮食(0.2 - 0.5微米),硬质合金的挑战
加工操作,例如干切削高合金
钢或高强度材料,可得。在
一方面,这些切削材料具有高的优势
在高温下。另一方面,是非常好的
和切削材料均匀结构的线索
令人满意的拉伸强度。因此,即使非常小的
工具和薄楔可以制造良好
尖端的稳定[53]。
在磨损行为的差异胶结
碳化物进行了调查不锈钢加工时
钢的最低数量润滑。这种钢
特点是高合金含量和austeniticferritic
结构。切割中使用的材料
调查的细晶,亚微米晶粒,超细
粮食硬质合金具有相同几何和
的PVD -铝钛涂层(图13)。
硬质合金切削材料是最
在现代常用的加工应用。在一
粉末冶金工艺的金属硬材料
烧结高压力和温度的钴
为粘结剂。硬质合金的属性
主要基于碳化钨钴比
粘合剂和复合晶粒尺寸。在一般情况下,
粒度越细,越用钴和更
耐磨材料变成[52]。
通过降低了晶粒尺寸钨硬质合金
亚微米晶粒(0.5 - 0.8微米)和超粉细
粮食(0.2 - 0.5微米),硬质合金的挑战
加工操作,例如干切削高合金
钢或高强度材料,可得。在
一方面,这些切削材料具有高的优势
在高温下。另一方面,是非常好的
和切削材料均匀结构的线索
令人满意的拉伸强度。因此,即使非常小的
工具和薄楔可以制造良好
尖端的稳定[53]。
在磨损行为的差异胶结
碳化物进行了调查不锈钢加工时
钢的最低数量润滑。这种钢
特点是高合金含量和austeniticferritic
结构。切割中使用的材料
调查的细晶,亚微米晶粒,超细
粮食硬质合金具有相同几何和
的PVD -铝钛涂层(图13)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询