已知三角形ABC中,AB=AC,D,E在三角形ABC中,AB=AC,点D,E是BC边上的点,
将三角形ABD绕点A旋转,得到三角形ACD’,连接D'E1.当∠BAC=120°,∠DAE=60°时,求证DE=D'E2.当DE=D'E是,∠DAE与∠BAC又怎样的数量...
将三角形ABD绕点A旋转,得到三角形ACD’,连接D'E
1.当∠BAC=120°,∠DAE=60°时,求证DE=D'E
2.当DE=D'E是,∠DAE与∠BAC又怎样的数量关系?请说明
3.在2的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D'EC是等腰直角三角形?请说明理由。
4.在2的结论下,当∠BAC=90°。当BD:DE=1:2时,试求∠BAD+∠AD’E的度数之和。 展开
1.当∠BAC=120°,∠DAE=60°时,求证DE=D'E
2.当DE=D'E是,∠DAE与∠BAC又怎样的数量关系?请说明
3.在2的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D'EC是等腰直角三角形?请说明理由。
4.在2的结论下,当∠BAC=90°。当BD:DE=1:2时,试求∠BAD+∠AD’E的度数之和。 展开
2013-12-08
展开全部
(1)证明:∵AB=AC
∴旋转后AB于AC重合。
有旋转得:
AD=AD' ∠BAD=∠CAD'
∵∠DAE=60°,∠BAC=120°
∴∠BAD+∠CAE=60°
∴∠CAD'+∠CAE=60°
即∠DAE=∠EAD
在△ADE和△AD'E中
AD=AD'
∠DAE=∠EAD
AE=AE
∴△ADE≌△AD'E(SAS)
∴DE=D'E
(2)∠BAC=2∠DAE
理由:旋转得AD=AD'
连接AE
∵DE=DE'
在△ADE和△AD'E中
AD=AD'
AE=AE
DE=D'E
∴△ADE≌△AD'E(SSS)
∴∠DAE=∠D'AE=∠EAC+∠D'AC=∠EAC+∠BAD
即∠DAE=∠EAC+∠BAD
∴∠BAC=∠DAE+∠EAC+∠BAD=2∠DAE
即∠BAC=2∠DAE
(3) DE=根号2*BD
(由1,2得到DE=D'E 若△ABC,D'EC均为等腰直角三角形,D'C=CE ∠D'CE=∠AD'C+∠ACB=∠BAD+∠ACB=90° D'E=CE*根号2 C'D=BD ∴BD=DE=D'E=CE*根号2 即 DE=根号2*BD)
∴旋转后AB于AC重合。
有旋转得:
AD=AD' ∠BAD=∠CAD'
∵∠DAE=60°,∠BAC=120°
∴∠BAD+∠CAE=60°
∴∠CAD'+∠CAE=60°
即∠DAE=∠EAD
在△ADE和△AD'E中
AD=AD'
∠DAE=∠EAD
AE=AE
∴△ADE≌△AD'E(SAS)
∴DE=D'E
(2)∠BAC=2∠DAE
理由:旋转得AD=AD'
连接AE
∵DE=DE'
在△ADE和△AD'E中
AD=AD'
AE=AE
DE=D'E
∴△ADE≌△AD'E(SSS)
∴∠DAE=∠D'AE=∠EAC+∠D'AC=∠EAC+∠BAD
即∠DAE=∠EAC+∠BAD
∴∠BAC=∠DAE+∠EAC+∠BAD=2∠DAE
即∠BAC=2∠DAE
(3) DE=根号2*BD
(由1,2得到DE=D'E 若△ABC,D'EC均为等腰直角三角形,D'C=CE ∠D'CE=∠AD'C+∠ACB=∠BAD+∠ACB=90° D'E=CE*根号2 C'D=BD ∴BD=DE=D'E=CE*根号2 即 DE=根号2*BD)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询