高数极限问题求解~~
确定常数a,b,c使lim(x→1)[(a(x-1)^2+b(x-1)+c-√(x^2+3))/(x-1)^2=0成立。求详细解答过程谢谢啦!!...
确定常数a,b,c使lim(x→1)[(a(x-1)^2+b(x-1)+c-√(x^2+3))/(x-1)^2=0成立。 求详细解答过程 谢谢啦!!
展开
1个回答
展开全部
lim(x→1)[(a(x-1)^2+b(x-1)+c-√(x^2+3))/(x-1)^2=0
lim(x→1)[(a(x-1)^2+b(x-1)+c-√(x^2+3))=0
c-2=0,c=2
lim(x→1)[(a(x-1)^2+b(x-1)+2-√(x^2+3))/(x-1)^2=0
罗比达法则
lim(x→1)[(2a(x-1)+b-x/√(x^2+3))/2(x-1)=0
lim(x→1)[(2a(x-1)+b-x/√(x^2+3))=0
b-1/2=0,b=0.5
罗比达法则
lim(x→1)[(2a-[[√(x^2+3)-x^2/√(x^2+3)]/(x^2+3)])/2=0
lim(x→1)[(2a-[[√(x^2+3)-x^2/√(x^2+3)]/(x^2+3)])=0
2a-3/8=0
a=3/16
lim(x→1)[(a(x-1)^2+b(x-1)+c-√(x^2+3))=0
c-2=0,c=2
lim(x→1)[(a(x-1)^2+b(x-1)+2-√(x^2+3))/(x-1)^2=0
罗比达法则
lim(x→1)[(2a(x-1)+b-x/√(x^2+3))/2(x-1)=0
lim(x→1)[(2a(x-1)+b-x/√(x^2+3))=0
b-1/2=0,b=0.5
罗比达法则
lim(x→1)[(2a-[[√(x^2+3)-x^2/√(x^2+3)]/(x^2+3)])/2=0
lim(x→1)[(2a-[[√(x^2+3)-x^2/√(x^2+3)]/(x^2+3)])=0
2a-3/8=0
a=3/16
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询