若数列{an}的每一项都不等于零,且对于任意n∈N*,都有a(n+1)/an=q(q为常数) 则称{an}称为“类等比数列”
若数列{an}的每一项都不等于零,且对于任意n∈N*,都有a(n+1)/an=q(q为常数)则称{an}称为“类等比数列”已知数列{bn}满足b1=b(b∈R,b≠0)b...
若数列{an}的每一项都不等于零,且对于任意n∈N*,都有a(n+1)/an=q(q为常数) 则称{an}称为“类等比数列”
已知数列{bn}满足b1=b (b∈R ,b≠0) bn*b(n+1)=2^(n+1)
(1)求证{bn}是类等比数列 展开
已知数列{bn}满足b1=b (b∈R ,b≠0) bn*b(n+1)=2^(n+1)
(1)求证{bn}是类等比数列 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询