在三角形ABC中.角ACB=2角B
1个回答
展开全部
解:(1)猜想:AB=AC+CD.
证明:如图②,在AB上截取AE=AC,连接DE,
∵AD为∠BAC的角平分线时,
∴∠BAD=∠CAD,
∵AD=AD,
∴△ADE≌△ADC(SAS),
∴∠AED=∠C,ED=CD,
∵∠ACB=2∠B,
∴∠AED=2∠B,
∴∠B=∠EDB,
∴EB=ED,
∴EB=CD,
∴AB=AE+DE=AC+CD.
(2)猜想:AB+AC=CD.
证明:在BA的延长线上截取AE=AC,连接ED.
∵AD平分∠FAC,
∴∠EAD=∠CAD.
在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,
∴△EAD≌△CAD.
∴ED=CD,∠AED=∠ACD.
∴∠FED=∠ACB.
又∠ACB=2∠B,∠FED=∠B+∠EDB,∠EDB=∠B.
∴EB=ED.
∴EA+AB=EB=ED=CD.
∴AC+AB=CD.
证明:如图②,在AB上截取AE=AC,连接DE,
∵AD为∠BAC的角平分线时,
∴∠BAD=∠CAD,
∵AD=AD,
∴△ADE≌△ADC(SAS),
∴∠AED=∠C,ED=CD,
∵∠ACB=2∠B,
∴∠AED=2∠B,
∴∠B=∠EDB,
∴EB=ED,
∴EB=CD,
∴AB=AE+DE=AC+CD.
(2)猜想:AB+AC=CD.
证明:在BA的延长线上截取AE=AC,连接ED.
∵AD平分∠FAC,
∴∠EAD=∠CAD.
在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,
∴△EAD≌△CAD.
∴ED=CD,∠AED=∠ACD.
∴∠FED=∠ACB.
又∠ACB=2∠B,∠FED=∠B+∠EDB,∠EDB=∠B.
∴EB=ED.
∴EA+AB=EB=ED=CD.
∴AC+AB=CD.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询