已知△ABC的内角A,B,C,对应的边分别为a,b,c,向量m=(2a,C-2b),向量n=(cosC,1),且向量m⊥n.
展开全部
解答:
向量m=(2a,C-2b),向量n=(cosC,1),且向量m⊥n.
∴ 2acosC+c-2b=0
利用正弦定理
a/sinA=b/sinB=c/sinC
∴ 2sinAcosC+sinC-2sinB=0
∵ sinB=sin(π-A-C)=sin(A+C)=sinAcosC+cosAsinC
∴ 2sinAcosC+sinC-2sinAcosC-2cosAsinC=0
∴ sinC=2cosAsinC
∴ cosA=1/2
∴ A=60°
利用余弦定理
a²=b²+c²-2bccosA=b²+c²-bc
即 (b+c)²-3bc=1
∵ (b+c)²≥4bc
∴ 1=(b+c)²-3bc≥(b+c)²-(3/4)(b+c)²
∴ (b+c)²≤4
∴ b+c≤2
有(b+c)²=1+3bc>1
∴ 1<b+c≤2
向量m=(2a,C-2b),向量n=(cosC,1),且向量m⊥n.
∴ 2acosC+c-2b=0
利用正弦定理
a/sinA=b/sinB=c/sinC
∴ 2sinAcosC+sinC-2sinB=0
∵ sinB=sin(π-A-C)=sin(A+C)=sinAcosC+cosAsinC
∴ 2sinAcosC+sinC-2sinAcosC-2cosAsinC=0
∴ sinC=2cosAsinC
∴ cosA=1/2
∴ A=60°
利用余弦定理
a²=b²+c²-2bccosA=b²+c²-bc
即 (b+c)²-3bc=1
∵ (b+c)²≥4bc
∴ 1=(b+c)²-3bc≥(b+c)²-(3/4)(b+c)²
∴ (b+c)²≤4
∴ b+c≤2
有(b+c)²=1+3bc>1
∴ 1<b+c≤2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询