高数偏导数
1个回答
展开全部
你好!
首先让我们来理解这道题的意思:它是想让楼主证明对于一个给出的二元函数,先对x求偏导数再对y求偏导数,其结果等于先对y求偏导数再对x求偏导数。
首先,先x后y:首先应用幂函数的求导法则,对x的偏导数得到 y*(x^(y-1));接着拿结果对y求导,用指数函数求导法则得到:x^*(y-1) + y* x^(y-1)*lnx = (1+y*lnx)*x^(y-1)
接下来,先y后x:首先用指数函数求导法则,对y求偏导,得到:x^y*lnx;接着用幂函数求导法则对x求导,得到:y*x^(y-1)*lnx + x^y*(1/x) = y*x^(y-1)*lnx + x^(y-1) = (1+y*lnx)*x^(y-1)
两边相等,证毕。其实对于一个一般的二元函数也可以证明一般性的证明这个结论成立,欢迎追问!
希望对你有帮助!
首先让我们来理解这道题的意思:它是想让楼主证明对于一个给出的二元函数,先对x求偏导数再对y求偏导数,其结果等于先对y求偏导数再对x求偏导数。
首先,先x后y:首先应用幂函数的求导法则,对x的偏导数得到 y*(x^(y-1));接着拿结果对y求导,用指数函数求导法则得到:x^*(y-1) + y* x^(y-1)*lnx = (1+y*lnx)*x^(y-1)
接下来,先y后x:首先用指数函数求导法则,对y求偏导,得到:x^y*lnx;接着用幂函数求导法则对x求导,得到:y*x^(y-1)*lnx + x^y*(1/x) = y*x^(y-1)*lnx + x^(y-1) = (1+y*lnx)*x^(y-1)
两边相等,证毕。其实对于一个一般的二元函数也可以证明一般性的证明这个结论成立,欢迎追问!
希望对你有帮助!
更多追问追答
追问
第三题呢 都写在一张纸上咯
追答
稍等片刻
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算及...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询