在三角形ABC中,已知cosA=3/5,sinB=1/3。求sin(2A+B),tan(A+2B)
1个回答
展开全部
cosA=3/5<√2/2 π/4 <A<π/2 π/2 <2A<π π/2<B+C<3π/4
sinB=1/3<1/2 0<B<π/6或5π/6<B<π而π/2<B+C<3π/4
所以0<B<π/6
所以sinA=4/5 cosB=2√2/3
sin2A=2sinAcosA=2*4/5*3/5=24/25 cos2A=-7/25
sinB=1/3 cosB=2√2/3
sin(2A+B)=sin2A cosB+ cos2AsinB=24/25*2√2/3-7/25*1/3 =(48√2-7)/75
tanA=sinA/cosA=4/3 tanB=sinB/cosB=√2/4
tan2B=2tanB/[1-(tanB)^2]=(2√2/4)/[1-(1/8)]=4√7/7
tan(A+2B)=(tanA+tan2B)/(1-tanAtan2B)
=(√2/4+4√7/7)/(1-√2/4*4√7/7)
=(√7+8√2)/(2√14-1)
看完了采纳哦~~祝学习进步!
sinB=1/3<1/2 0<B<π/6或5π/6<B<π而π/2<B+C<3π/4
所以0<B<π/6
所以sinA=4/5 cosB=2√2/3
sin2A=2sinAcosA=2*4/5*3/5=24/25 cos2A=-7/25
sinB=1/3 cosB=2√2/3
sin(2A+B)=sin2A cosB+ cos2AsinB=24/25*2√2/3-7/25*1/3 =(48√2-7)/75
tanA=sinA/cosA=4/3 tanB=sinB/cosB=√2/4
tan2B=2tanB/[1-(tanB)^2]=(2√2/4)/[1-(1/8)]=4√7/7
tan(A+2B)=(tanA+tan2B)/(1-tanAtan2B)
=(√2/4+4√7/7)/(1-√2/4*4√7/7)
=(√7+8√2)/(2√14-1)
看完了采纳哦~~祝学习进步!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询