1个回答
2013-12-03 · 知道合伙人人文行家
关注
展开全部
设过(4,0)的直线为 y=k(x-4),
联立y^2=4x
得(k^2)x^2-(8k^2+4)x+4k^2=0
于是y1^2+y2^2=4x1+4x2=4(x1+x2)=4(8k^2+4)/k^2=4(8+4/k^2)
=32+8/k^2.
显然,当K→∞,8/k^2→0,即当AB所在的直线⊥OX轴时Y1^2+Y2^2最小值是32
联立y^2=4x
得(k^2)x^2-(8k^2+4)x+4k^2=0
于是y1^2+y2^2=4x1+4x2=4(x1+x2)=4(8k^2+4)/k^2=4(8+4/k^2)
=32+8/k^2.
显然,当K→∞,8/k^2→0,即当AB所在的直线⊥OX轴时Y1^2+Y2^2最小值是32
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询