GMAT题目,求解答,解释
1个回答
2014-10-12
展开全部
主要就是你得弄明白2-height是什么意思
2-height 题是GMAT数学部分常考的一个题型。因为题中会给出一个关于2-height的定义, 所以G友通常称之为2-height题。
举个例子吧,40=2*2*2*5,即2的三次方乘以5,3就是2-height 的值,再如12=2*2*3,即2的二次方乘以3,所以2就是2-height 的值。
总的来说,就是把一个整数分解成质数的乘积,其中2的幂就是2-height 的值。
10、For all x, x is positive integer, "2-height" is defined
to be the greatest nonnegative n of x, what is the
greatest number of 2-height when 2" is the factor of x?
A. 2
B. 12
C. 40
D. 76
E. 90
Answer: (by Anchoret)
A. 2=2^1
B. 12=2^2*3
C. 40=2^3*5
D. 76=19*2^2
E. 90=45*2^1
B is the answer.
1.
X is a positive integer. 2-height of X is defined as the greatest
negative integer n where 2^n is a factor of X. K and M are two positive
integers. Whether 2-height of K is greater than 2-height of M?
a. K is greater than M
b. K is even times of M
(Key: B)
(by rosemsem)
题义解析:说对于含2的n次方的数, 2-height 指的是n的值。问k和m谁的2-height大?
(1) K>M
(2) K除以M是偶数.
(please notice K,k; M,m; e)
K = a* 2^k;
M = b* 2^m;
(1) k>m, means nothing.
(2) k/m= (a/b) * (2^k/2^m) = 2^e;
A,
b must be odd number, or you can extract at least one more 2, which
gonna change k or m. So in this case, (a/b) must be 1, otherwise it
would be a fraction.
In a word, k-m=e. K>m.
B is sufficient.
linda(2004)
2-height 题是GMAT数学部分常考的一个题型。因为题中会给出一个关于2-height的定义, 所以G友通常称之为2-height题。
举个例子吧,40=2*2*2*5,即2的三次方乘以5,3就是2-height 的值,再如12=2*2*3,即2的二次方乘以3,所以2就是2-height 的值。
总的来说,就是把一个整数分解成质数的乘积,其中2的幂就是2-height 的值。
10、For all x, x is positive integer, "2-height" is defined
to be the greatest nonnegative n of x, what is the
greatest number of 2-height when 2" is the factor of x?
A. 2
B. 12
C. 40
D. 76
E. 90
Answer: (by Anchoret)
A. 2=2^1
B. 12=2^2*3
C. 40=2^3*5
D. 76=19*2^2
E. 90=45*2^1
B is the answer.
1.
X is a positive integer. 2-height of X is defined as the greatest
negative integer n where 2^n is a factor of X. K and M are two positive
integers. Whether 2-height of K is greater than 2-height of M?
a. K is greater than M
b. K is even times of M
(Key: B)
(by rosemsem)
题义解析:说对于含2的n次方的数, 2-height 指的是n的值。问k和m谁的2-height大?
(1) K>M
(2) K除以M是偶数.
(please notice K,k; M,m; e)
K = a* 2^k;
M = b* 2^m;
(1) k>m, means nothing.
(2) k/m= (a/b) * (2^k/2^m) = 2^e;
A,
b must be odd number, or you can extract at least one more 2, which
gonna change k or m. So in this case, (a/b) must be 1, otherwise it
would be a fraction.
In a word, k-m=e. K>m.
B is sufficient.
linda(2004)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询