S(x) = ∑<n=1,∞>n(n+1)x^n = ∑<n=1,∞>(n+2-2)(n+1)x^n
= ∑<n=1,∞>(n+2)(n+1)x^n - 2∑<n=1,∞>(n+1)x^n
= [∑<n=1,∞>x^(n+2)]''- 2[∑<n=1,∞>x^(n+1)]'
= [x^3/(1-x)]''- 2[x^2/(1-x)]'
= 2x(3-3x+x^2)/(1-x)^3 - 2x(2-x)/(1-x)^2 = 2x/(1-x)^3.
收敛域 -1<x<1.
S(x)= ∑<n=1,∞>x^(n-1)/(n*2^n)
当 x=0 时, S(x)=0;
当 x≠0 时, S(x)=[1/(2x)]∑<n=1,∞>x^n/[n*2^(n-1)],
记 S1(x) = ∑<n=1,∞>x^n/[n*2^(n-1)],
则 [S1(x)]' = ∑<n=1,∞>x^(n-1)/2^(n-1)
= ∑<n=1,∞>(x/2)^(n-1) = 1/(1-x/2) = 2/(2-x).
S1(x) =∫<1,x>2dt/(2-t) = -2ln(2-x),
S(x) = -2ln(2-x)/(2x) = -ln(2-x)/x. x∈(-2,0) ∪(0,2).