第2问,初一数学
1个回答
展开全部
最快回答,望采纳!!!!!!!!!!!!!!!!!!!!!!!!!
分析:(1)要求AE=CD,可把两条线段放在△ABE,△DBC中,求两个三角形全等即可.
(2)判断题,也即分析证明题,在(1)的基础上,通过三角形的全等,可证明其为等边三角形.
解答:(1)证明:∵△ABD、△BCE都是等边三角形,
∴AB=BD,BC=BE,∠ABD=∠CBE=60°,
∴∠ABD+∠DBE=∠DBE+∠CBE即∠ABE=∠DBC,
∴在△ABE和△DBC中AB=DB
∠ABE=∠DBC
BE=BC
△ABE≌△DBC.
∴AE=CD.
(2)解:△MBN是等边三角形.
∵△ABE≌△DBC,
∴∠BAE=∠BDC.
∵AE=CD,M、N分别是AE、CD的中点,
∴AM=DN;
又∵AB=DB.
∴△ABM≌△DBN.
BM=BN.
∠ABM=∠DBN.
∴∠DBM+∠DBN=∠DBM+∠ABM=∠ABD=60°.
∴△MBN是等边三角形.
点评:本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得三角形全等是正确解答本题的关键.
分析:(1)要求AE=CD,可把两条线段放在△ABE,△DBC中,求两个三角形全等即可.
(2)判断题,也即分析证明题,在(1)的基础上,通过三角形的全等,可证明其为等边三角形.
解答:(1)证明:∵△ABD、△BCE都是等边三角形,
∴AB=BD,BC=BE,∠ABD=∠CBE=60°,
∴∠ABD+∠DBE=∠DBE+∠CBE即∠ABE=∠DBC,
∴在△ABE和△DBC中AB=DB
∠ABE=∠DBC
BE=BC
△ABE≌△DBC.
∴AE=CD.
(2)解:△MBN是等边三角形.
∵△ABE≌△DBC,
∴∠BAE=∠BDC.
∵AE=CD,M、N分别是AE、CD的中点,
∴AM=DN;
又∵AB=DB.
∴△ABM≌△DBN.
BM=BN.
∠ABM=∠DBN.
∴∠DBM+∠DBN=∠DBM+∠ABM=∠ABD=60°.
∴△MBN是等边三角形.
点评:本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得三角形全等是正确解答本题的关键.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询