高中数学,函数的奇偶性没学好
3个回答
展开全部
奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数);偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能倒推其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。
证明方法:
⑴定义法:函数定义域是否关于原点对称,对应法则是否相同
⑵图像法:f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y)→(-x,-y) f(x)为偶函数<=>f(x)的图像关于Y轴对称 点(x,y)→(-x,y)
⑶特值法:根据函数奇偶性定义,在定义域内取特殊值自变量,计算后根据因变量的关系判断函数奇偶性。
⑷性质法:利用一些已知函数的奇偶性及以下准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和(差)是奇函数;两个偶函数的和(差)是偶函数;奇函数与偶函数的和(差)既非奇函数也非偶函数;两个奇函数的积(商)为偶函数;两个偶函数的积(商)为偶函数;奇函数与偶函数的积(商)是奇函数。
证明方法:
⑴定义法:函数定义域是否关于原点对称,对应法则是否相同
⑵图像法:f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y)→(-x,-y) f(x)为偶函数<=>f(x)的图像关于Y轴对称 点(x,y)→(-x,y)
⑶特值法:根据函数奇偶性定义,在定义域内取特殊值自变量,计算后根据因变量的关系判断函数奇偶性。
⑷性质法:利用一些已知函数的奇偶性及以下准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和(差)是奇函数;两个偶函数的和(差)是偶函数;奇函数与偶函数的和(差)既非奇函数也非偶函数;两个奇函数的积(商)为偶函数;两个偶函数的积(商)为偶函数;奇函数与偶函数的积(商)是奇函数。
展开全部
f(x)是奇函数,所以f(0)=0
f(-1)=-f(1)=-1/2
f(1)=f(-1)+f(2),即1/2=(-1/2)+f(2),所以f(2)=1
f(3)=f(1)+f(2)=(1/2)+1=3/2
f(5)=f(2)+f(3)=5/2
f(-1)=-f(1)=-1/2
f(1)=f(-1)+f(2),即1/2=(-1/2)+f(2),所以f(2)=1
f(3)=f(1)+f(2)=(1/2)+1=3/2
f(5)=f(2)+f(3)=5/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询