已知函数f(x)=lnx+1x-1.(1)求函数f(x)的单调区间;(2)设m∈R,对任意的a∈(-1,1),总存在x0

已知函数f(x)=lnx+1x-1.(1)求函数f(x)的单调区间;(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立,... 已知函数f(x)=lnx+1x-1.(1)求函数f(x)的单调区间;(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求实数m的取值范围;(3)若{an}是首项为1的正项数列,且nan+12-(n+1)an2-an+1an=0,若不等式e(n-1)α≥an对任意的n≥2且n∈N*都成立,求α的取值范围. 展开
 我来答
坂口美香
推荐于2016-07-17 · 超过62用户采纳过TA的回答
知道答主
回答量:121
采纳率:100%
帮助的人:122万
展开全部
(1)∵f(x)=lnx+
1
x
-1的定义域为(0,+∞),
且f′(x)=
1
x
-
1
x2
=
x?1
x2

故函数f(x)的单调减区间为(0,1),单调增区间为(1,+∞);
(2)∵函数f(x)在[1,e]上单调递增,
∴0≤f(x0)≤
1
e

∴对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立可化为
对任意的a∈(-1,1),ma<
1
e
恒成立,
?m≤
1
e
m≤
1
e

解得,-
1
e
≤m≤
1
e

(3)∵nan+12-(n+1)an2-an+1an=0,
∴[nan+1-(n+1)an][an+1+an]=0,
又∵{an}是首项为1的正项数列,
∴nan+1-(n+1)an=0,
an+1
an
=
n+1
n
,又∵首项为1,
∴an=n,
则不等式e(n-1)α≥an对任意的n≥2且n∈N*都成立可化为e(n-1)α≥n对任意的n≥2且n∈N*都成立;
则当n=2时,eα≥2,则α≥ln2>
1
2

e(n-1)α≥n对任意的n≥2且n∈N*都成立可化为(n-1)α-lnn≥0对任意的n≥2且n∈N*都成立;
令f(x)=(x-1)α-lnx,则f′(x)=α-
1
x

则当x∈[2,+∞)时,f′(x)=α-
1
x
>0,
f(x)=(x-1)α-lnx在[2,+∞)上是增函数,
故(n-1)α-lnn≥0对任意的n≥2且n∈N*都成立可化为α-ln2≥0,
故α≥ln2.
综上所述,α≥ln2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式