∫(1→1/√2)√(1-x²)dx/x² 计算定积分 10
2015-01-04
展开全部
答:
∫[√(1-x²)/x²]dx 设x=sint∈[1/√2,1],π/4<=t<=π/2
=∫(cost/sin²t)d(sint)
=∫(cos²t/sin²t)dt
=∫(csc²t-1)dt
=-ctant-t+C
所以定积分=(0-π/2)-(-1-π/4)=-π/2+1+π/4=1-π/4
所以定积分=1-π/4
∫[√(1-x²)/x²]dx 设x=sint∈[1/√2,1],π/4<=t<=π/2
=∫(cost/sin²t)d(sint)
=∫(cos²t/sin²t)dt
=∫(csc²t-1)dt
=-ctant-t+C
所以定积分=(0-π/2)-(-1-π/4)=-π/2+1+π/4=1-π/4
所以定积分=1-π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |