(1)如图1:在△ABC中,AB=AC,当∠ABD=∠ACD=60°时,猜想AB与BD+CD数量关系,请直接写出结果______;

(1)如图1:在△ABC中,AB=AC,当∠ABD=∠ACD=60°时,猜想AB与BD+CD数量关系,请直接写出结果______;(2)如图2:在△ABC中,AB=AC,... (1)如图1:在△ABC中,AB=AC,当∠ABD=∠ACD=60°时,猜想AB与BD+CD数量关系,请直接写出结果______;(2)如图2:在△ABC中,AB=AC,当∠ABD=∠ACD=45°时,猜想AB与BD+CD数量关系并证明你的结论;(3)如图3:在△ABC中,AB=AC,当∠ABD=∠ACD=β(20°≤β≤70°)时,直接写出AB与BD+CD数量关系(用含β的式子表示). 展开
 我来答
O垫祡
2014-09-16 · TA获得超过147个赞
知道答主
回答量:131
采纳率:0%
帮助的人:121万
展开全部
解答:解:(1)如图1,延长BD至E,使BE=AB,连接AE、CE,
∵∠ABD=60°,
∴△ABE是等边三角形,
∴AE=AB,∠AEB=60°,
∵AB=AC,
∴AC=AE,
∴∠ACE=∠AEC,
∵∠ACD=60°,
∴∠ACE-∠ACD=∠AEC-∠AEB,
即∠DCE=∠DEC,
∴DE=CD,
∴BE=BD+DE=BD+CD,
∴AB=BD+CD;
故答案为:AB=BD+CD;

(2)猜想:AB=
2
2
(BD+CD).
理由如下:如图2,过点A作AE⊥AB交BD的延长线于点E,连接CE,
∵∠ABD=45°,
∴△ABE是等腰直角三角形,
∴AE=AB,∠AEB=45°,
∵AB=AC,
∴AC=AE,
∴∠ACE=∠AEC,
∵∠ACD=45°,
∴∠ACE-∠ACD=∠AEC-∠AEB,
即∠DCE=∠DEC,
∴DE=CD,
∴BE=BD+DE=BD+CD,
在Rt△ABE中,AB=BE?cos∠ABD=(BD+CD)?cos45°=
2
2
(BD+CD),
即AB=
2
2
(BD+CD);

(3)如图3,过点A作AF⊥BD于点F,延长BD到E,使EF=BF,连接AE、CE,
则AE=AB(等腰三角形三线合一),
∴∠AEB=∠ABD=β,
∵AB=AC,
∴AC=AE,
∴∠ACE=∠AEC,
∵∠ACD=β,
∴∠ACE-∠ACD=∠AEC-∠AEB,
即∠DCE=∠DEC,
∴DE=CD,
∴BE=BD+DE=BD+CD,
在Rt△ABF中,AB?cos∠ABD=
1
2
BE,
即AB?cosβ=
1
2
(BD+CD).
小兔谁家的
2015-09-27 · TA获得超过5753个赞
知道大有可为答主
回答量:6516
采纳率:20%
帮助的人:1243万
展开全部
AB小于或等于BD+CD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式