已知函数fx=cos(2x+φ)其中φ为实数,且φ绝对值<π,若f(x)≤f(π/3)绝对值
对x属于R恒成立,又f(π/2)<f(2π/3)求fx解析式将函数y=fx的图像向右平移π/4但未得到g(x)图像,求当x属于【-π/12,5π/12】是gx的值域...
对x属于R恒成立,又f(π/2)<f(2π/3)求fx解析式 将函数y=fx的图像向右平移π/4但未得到g(x)图像,求当x属于【-π/12,5π/12】是gx的值域
展开
1个回答
展开全部
(1)
f(x)=cos(2x+φ)
f(x)≤|f(π/3)|对x属于R恒成立.
那么f(π/3)为f(x)的最值,
即cos(2π/3+φ)=±1
∴2π/3+φ=kπ,k∈Z
∴φ=kπ-2π/3,k∈Z
∵|φ|<π
∴φ=-2π/3,或φ=π/3
当φ=-2π/3时,
f(x)=cos(2x-2π/3)
f(π/2)=cosπ/3=1/2
f(2π/3)=cos2π/3=-1/2
不符合f(π/2)<f(2π/3)
当φ=π/3时,
f(x)=cos(2x+π/3)
f(π/2)=cos5π/6=-√3/2
f(2π/3)=cos5π/3=1/2
符合f(π/2)<f(2π/3)
∴f(x)=cos(2x+π/3)
(2)
将f(x)图像向右平移π/4单位,得到
g(x)=f(x-π/4)=cos[2(x-π/4)+π/3]=cos(2x-π/6)
∵x属于【-π/12,5π/12】
∴-π/3≤2x-π/6≤2π/3
∴-1/2≤cos(2x-π/6)≤1
g(x)值域为[-1/2,1]
f(x)=cos(2x+φ)
f(x)≤|f(π/3)|对x属于R恒成立.
那么f(π/3)为f(x)的最值,
即cos(2π/3+φ)=±1
∴2π/3+φ=kπ,k∈Z
∴φ=kπ-2π/3,k∈Z
∵|φ|<π
∴φ=-2π/3,或φ=π/3
当φ=-2π/3时,
f(x)=cos(2x-2π/3)
f(π/2)=cosπ/3=1/2
f(2π/3)=cos2π/3=-1/2
不符合f(π/2)<f(2π/3)
当φ=π/3时,
f(x)=cos(2x+π/3)
f(π/2)=cos5π/6=-√3/2
f(2π/3)=cos5π/3=1/2
符合f(π/2)<f(2π/3)
∴f(x)=cos(2x+π/3)
(2)
将f(x)图像向右平移π/4单位,得到
g(x)=f(x-π/4)=cos[2(x-π/4)+π/3]=cos(2x-π/6)
∵x属于【-π/12,5π/12】
∴-π/3≤2x-π/6≤2π/3
∴-1/2≤cos(2x-π/6)≤1
g(x)值域为[-1/2,1]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询