(2014?东营二模)如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边
(2014?东营二模)如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BD...
(2014?东营二模)如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(1)求证:DC⊥平面ABC;(2)设CD=a,求三棱锥A-BFE的体积.
展开
1个回答
展开全部
解:(1)证明:在图甲中,∵AB=BD,且∠A=45°,
∴∠ADB=45°,∠ABC=90° 即AB⊥BD.
在图乙中,∵平面ABD⊥平面BDC,且平面ABD∩平面BDC=BD,
∴AB⊥底面BDC,∴AB⊥CD.又∠DCB=90°,
∴DC⊥BC,且AB∩BC=B,∴DC⊥平面ABC.
(2)∵E、F分别为AC、AD的中点,∴EF∥CD,
又由(1)知,DC⊥平面ABC,∴EF⊥平面ABC,
∴VA?BFE=VF?AEB=
S△AEB?FE,在图甲中,∵∠ADC=105°,∴∠BDC=60°,∠DBC=30°,
由CD=a得BD=2a,BC=
a,EF=
CD=
a,∴S△ABC=
AB?BC=
?2a?
a=
a2,
∴S△AEB=
a2,∴VA?BFE=
?
a2?
a=
∴∠ADB=45°,∠ABC=90° 即AB⊥BD.
在图乙中,∵平面ABD⊥平面BDC,且平面ABD∩平面BDC=BD,
∴AB⊥底面BDC,∴AB⊥CD.又∠DCB=90°,
∴DC⊥BC,且AB∩BC=B,∴DC⊥平面ABC.
(2)∵E、F分别为AC、AD的中点,∴EF∥CD,
又由(1)知,DC⊥平面ABC,∴EF⊥平面ABC,
∴VA?BFE=VF?AEB=
1 |
3 |
由CD=a得BD=2a,BC=
3 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
3 |
3 |
∴S△AEB=
| ||
2 |
1 |
3 |
| ||
2 |
1 |
2 |
|