(2012?包头)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分
(2012?包头)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1...
(2012?包头)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?(3)当t为何值时,△EDQ为直角三角形.
展开
展开全部
解:(1)能,
如图1,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,t=1秒,
∴AP=1厘米,BQ=1.25厘米,
∵AC=4cm,BC=5cm,点D在BC上,CD=3cm,
∴PC=AC-AP=4-1=3(厘米),QD=BC-BQ-CD=5-1.25-3=0.75(厘米),
∵PE∥BC,
∴
=
,
=
,解得PE=0.75,
∵PE∥BC,PE=QD,
∴四边形EQDP是平行四边形;
(2)如图2,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,
∴PC=AC-AP=4-t,QC=BC-BQ=5-1.25t,
∴
=
=1-
,
=
=1-
,
∴
=
,
∴PQ∥AB;
(3)分两种情况讨论:
①如图3,当∠EQD=90°时,显然有EQ=PC=4-t,
又∵EQ∥AC,
∴△EDQ∽△ADC
∴
=
,
∵BC=5厘米,CD=3厘米,
∴BD=2厘米,
∴DQ=1.25t-2,
∴
=
,解得t=2.5(秒);
②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则四边形EMCP是矩形,EM=PC=4-t,
在Rt△ACD中,
∵AC=4厘米,CD=3厘米,
∴AD=
=
=5,
∴CN=
如图1,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,t=1秒,
∴AP=1厘米,BQ=1.25厘米,
∵AC=4cm,BC=5cm,点D在BC上,CD=3cm,
∴PC=AC-AP=4-1=3(厘米),QD=BC-BQ-CD=5-1.25-3=0.75(厘米),
∵PE∥BC,
∴
AP |
AC |
PE |
CD |
1 |
4 |
PE |
3 |
∵PE∥BC,PE=QD,
∴四边形EQDP是平行四边形;
(2)如图2,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,
∴PC=AC-AP=4-t,QC=BC-BQ=5-1.25t,
∴
PC |
AC |
4?t |
4 |
t |
4 |
CQ |
BC |
5?1.25t |
5 |
t |
4 |
∴
PC |
AC |
CQ |
BC |
∴PQ∥AB;
(3)分两种情况讨论:
①如图3,当∠EQD=90°时,显然有EQ=PC=4-t,
又∵EQ∥AC,
∴△EDQ∽△ADC
∴
EQ |
AC |
DQ |
DC |
∵BC=5厘米,CD=3厘米,
∴BD=2厘米,
∴DQ=1.25t-2,
∴
4?t |
4 |
1.25t?2 |
3 |
②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则四边形EMCP是矩形,EM=PC=4-t,
在Rt△ACD中,
∵AC=4厘米,CD=3厘米,
∴AD=
AC2+CD2 |
42+32 |
∴CN=
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载