已知:如图,Rt△ABC,∠ACB=90°,点E是边BC上一点,过点E作FE⊥BC(垂足为E)交AB于点F,且EF=AF,以点

已知:如图,Rt△ABC,∠ACB=90°,点E是边BC上一点,过点E作FE⊥BC(垂足为E)交AB于点F,且EF=AF,以点E为圆心,EC长为半径作⊙E交BC于点D.(... 已知:如图,Rt△ABC,∠ACB=90°,点E是边BC上一点,过点E作FE⊥BC(垂足为E)交AB于点F,且EF=AF,以点E为圆心,EC长为半径作⊙E交BC于点D.(1)求证:斜边AB是⊙E的切线;(2)设若AB与⊙E相切的切点为G,AC=8,EF=5,连DA、DG,求S △ADG . 展开
 我来答
兔子WY20HC
2014-08-17 · 超过66用户采纳过TA的回答
知道答主
回答量:132
采纳率:75%
帮助的人:62.9万
展开全部
(1)过点E作EG⊥AB于点G,连接EA;
∵AF=EF,∠FEA+∠AEC=90°,∠AEC+∠EAC=90°,
∴∠FEA=∠FAE,
∴∠FAE=∠EAC,
∴AE为角平分线,
∴EG=EC,
∴斜边AB是⊙E的切线.

(2)连CG与AE相交于点H,由切线长定理得到:AC=AG=8,
由EF=AF=5;得FG=AG-AF=8-5=3,
在Rt△EFG中,根据勾股定理得:EG=CE=
E F 2 -F G 2
=4,
∴AE=
A C 2 +C E 2
= 4
5
,又
1
2
AE?GH=
1
2
AG?GE,
∴GH=
AG?GE
AE
=
8
5
5
,GC=2GH=
16
5
5

∴DG=
(2C E) 2 -C G 2
=
8
5
5

∴S Rt△DGC =
1
2
DG?CG=
64
5

由Rt△DGC的面积为
64
5

∵CD是直径,
∴∠DGC=90°,
∵AG、AC是⊙E切线,
∴AE⊥CG,
∴∠EHC=90°=∠DGC,
∴DG AE,
∴S △AGD =S △DGE =
1
2
S Rt△DGC =
32
5

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式