(2012?江苏三模)如图,在直三棱柱ABC-A1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点
(2012?江苏三模)如图,在直三棱柱ABC-A1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点.(1)求证:MN∥平面AA1C1C;(...
(2012?江苏三模)如图,在直三棱柱ABC-A1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点.(1)求证:MN∥平面AA1C1C;(2)若AC=AA1,求证:MN⊥平面A1BC.
展开
1个回答
展开全部
(1)连接AC1,
∵矩形AA1B1B中,M为A1B与AB1的交点,
∴M是AB1的中点,
又∵N为棱B1C1的中点,
∴△AB1C1中,MN是中位线,可得MN∥AC1,…(4分)
又∵AC1?平面AA1C1C,MN?平面AA1C1C,
∴MN∥平面AA1C1C.…(6分)
(2)∵矩形A1C1CA中,AC=AA1,
∴四边形AA1C1C是正方形,可得AC1⊥A1C,
又∵直三棱柱ABC-A1B1C1中,CC1⊥平面ABC,且BC?平面ABC,
∴CC1⊥BC.
∵∠ACB=90°,即AC⊥BC,
∴结合CC1∩AC=C,得BC⊥平面AA1C1C,
∵AC1?平面AA1C1C,∴BC⊥AC1,…(8分)
∵BC、A1C是平面A1BC内的相交直线,
∴AC1⊥平面A1BC
又∵MN∥AC1,∴MN⊥平面A1BC.…(14分)
∵矩形AA1B1B中,M为A1B与AB1的交点,
∴M是AB1的中点,
又∵N为棱B1C1的中点,
∴△AB1C1中,MN是中位线,可得MN∥AC1,…(4分)
又∵AC1?平面AA1C1C,MN?平面AA1C1C,
∴MN∥平面AA1C1C.…(6分)
(2)∵矩形A1C1CA中,AC=AA1,
∴四边形AA1C1C是正方形,可得AC1⊥A1C,
又∵直三棱柱ABC-A1B1C1中,CC1⊥平面ABC,且BC?平面ABC,
∴CC1⊥BC.
∵∠ACB=90°,即AC⊥BC,
∴结合CC1∩AC=C,得BC⊥平面AA1C1C,
∵AC1?平面AA1C1C,∴BC⊥AC1,…(8分)
∵BC、A1C是平面A1BC内的相交直线,
∴AC1⊥平面A1BC
又∵MN∥AC1,∴MN⊥平面A1BC.…(14分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询