1个回答
展开全部
∵{an}为等差数列
∴an=a1+(n-1)d
∵a17=a1+16d=2a8=2a1+14d
∴a1=2d
∵a5=a1+4d=3,
∴3a1=3
a1=1,d=1/2
∴an=1+(n-1)/2=(n+1)/2为所求
∵bn=1/(a(n+1)an)=1/((n+2)/2*(n+1)/2)=4/((n+1)(n+2))=4*(1/(n+1)-1/(n+2))
∴b(n-1)=4*(1/n-1/(n+1))
……
b3=4*(1/4-1/5)
b2=4*(1/3-1/4)
b1=4*(1/2-1/3)
∴Sn=4*(1/2-1/(n+2))=2n/(n+2)为所求
∴an=a1+(n-1)d
∵a17=a1+16d=2a8=2a1+14d
∴a1=2d
∵a5=a1+4d=3,
∴3a1=3
a1=1,d=1/2
∴an=1+(n-1)/2=(n+1)/2为所求
∵bn=1/(a(n+1)an)=1/((n+2)/2*(n+1)/2)=4/((n+1)(n+2))=4*(1/(n+1)-1/(n+2))
∴b(n-1)=4*(1/n-1/(n+1))
……
b3=4*(1/4-1/5)
b2=4*(1/3-1/4)
b1=4*(1/2-1/3)
∴Sn=4*(1/2-1/(n+2))=2n/(n+2)为所求
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询