用牛顿-莱布尼茨公式计算下列积分,求详细过程!多谢!
1个回答
展开全部
约定:∫[a,b]表示[a,b]上的定积分
(1)原式=∫[0,π]|sinx-cosx|dx
=∫[0,π/4](cosx-sinx)dx+∫[π/4,π](sinx-cosx)dx
=(sinx+cosx)|[0,π/4]+(-sinx-cosx)|[π/4,π]
=(√2-1)+(1+√2)
=2√2
(2)原式=∫[-1,1]1dx+∫[1,3]x^2dx
=x|[-1,1]+(1/3)x^3|[1,3]
=2+(9-1/3)
=32/3
希望能帮到你!
(1)原式=∫[0,π]|sinx-cosx|dx
=∫[0,π/4](cosx-sinx)dx+∫[π/4,π](sinx-cosx)dx
=(sinx+cosx)|[0,π/4]+(-sinx-cosx)|[π/4,π]
=(√2-1)+(1+√2)
=2√2
(2)原式=∫[-1,1]1dx+∫[1,3]x^2dx
=x|[-1,1]+(1/3)x^3|[1,3]
=2+(9-1/3)
=32/3
希望能帮到你!
追问
第一题为什么不从2/∏划分而用4/∏呢?
追答
因(0,π/4)上cosx>sinx,(π/4,π)上cosx<sinx.
希望能帮到你!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询