线性代数 设三阶矩阵A的特征值分别为1,2,3,则|A+2E|=
4个回答
展开全部
|A+2E|=60。
若λ是A的特征值,则λ+2是A+2E的特征值。本题A的特征值是1,2,3,A+2E的特征值是3,4,5,所以|A+2E|=3*4*5=60。
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
扩展资料:
求矩阵的全部特征值和特征向量的方法如下:
1、计算的特征多项式;
2、求出特征方程的全部根,即为的全部特征值;
3、对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量。(其中是不全为零的任意实数)。
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
展开全部
你好!若λ是A的特征值,则λ+2是A+2E的特征值。本题A的特征值是1,2,3,A+2E的特征值是3,4,5,所以|A+2E|=3*4*5=60。经济数学团队帮你解答,请及时采纳。谢谢!
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
若λ是A的特征值,则λ+2是A+2E的特征值。本题A的特征值是1,2,3,A+2E的特征值是3,4,5,所以|A+2E|=3*4*5=60。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询