初二几何证明题(详细解答)

如图,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,与直线BC相交。(1)求证:FG=½... 如图,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,与直线BC相交。
(1)求证:FG=½(AB+BC+AC) (½代表二分之一)
(2)若BD、CE分别是△ABC的内角平分线,如图2;BD为△ABC的内角平分线,CE为△ABC的外角平分线,如图(3),则在图(2)、图(3)两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况说明理由。
展开
370116
高赞答主

2010-02-07 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
1)
证明提示:
因为BD平分∠ABM,AM⊥BD
所以可证明△ABF≌△MBF
所以AF=MF,AB=BM
所以F是AM的中点
同理,G是AN的中点,AC=CN
所以FG是△AMN的中位线
所以FG=MN/2=(BM+BC+CN)/2
所以FG=(AB+BC+AC)/2
2)
图2中,有FG=(AB+AC-BC)/2
图3中,有FG=(AC+BC-AB)/2
图2结论的证明:
延长AF、AG分别交直线BC于M、N
与1)同理,AB=BM,AC=CN,FG=MN/2
因为MN=BM-BN=AB-BN
MN=CN-CM=AC-CM
所以2MN=AB+AC-(BN+CM)
=AB+AC-(BC-MN)
所以MN=AB+AC-AB
所以FG=(AB+AC-AB)
图3结论的证明:
延长AF、AG分别交直线BC于M、N
与1)同理,AB=BM,AC=CN,FG=MN/2
则MN=CM+CN=CM+AC
=BC-BM+AC
=BC-AB+AC
所以FG=(AC+BC-AB)/2

参考资料:http://hi.baidu.com/jswyc/blog/item/ef15970041f2860b728da567.html

参考资料: 图:http://hiphotos.baidu.com/zhidao/pic/item/838ba61e2011ce3041341795.jpg

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式